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Abstract 

The quantization of several Schr6dinger fields interacting with the electromagnetic field 
is carried out without reference to a particular gauge. The canonical formalism requires 
a modification introduced by Dirac and Bergmann for constraints. The Coulomb inter- 
action is separated from the radiation and it gives rise to botmd states of atoms and 
molecules. Particle operators are represented in the usual manner in Fock space, while 
the radiation field can be described by state functionals. Constraints can be included in 
the canonical formalism by Lagrange multipliers, leading to results equivalent to those 
of Dirac and Bergmann. 

1. Introduction 

There are a number of  possible approaches to the problem of emission 
and absorption of radiation by atoms and molecules (Kramers, 1957). 
The most realistic treatment involves a quantized radiation field, and 
theories involving only a classical electromagnetic field are usually accepted 
only as approximations. It  is then quite logical to extend to the non- 
relativistic Schr6dinger field the well-developed formalism of  quantum 
electrodynamics. Nevertheless, it is difficult to take into account bound 
states in a theory primarily developed for scattering problems, and these 
states are obviously important  for the interaction of radiation with atoms 
and molecules. I t  then follows that the Coulomb interaction should be 
separated f rom the radiation field, and this is usually carried out in a 
Coulomb or radiation gauge. 

It  is well known that the electromagnetic field has only two degrees of  
freedom, and that a representation by four potentials or six field components 
is redundant,  leading to constraint equations. We also have to require that 
all physical results be independent of  the gauge chosen to perform the 
calculations. In order to help the understanding of the theory and to 
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facilitate comparisons with the relativistic analogues, we derive the equa- 
tions which often serve as a starting point in this problem in a systematic 
way from the simplest assumptions of quantum field theory. And we do so 
without reference to any particular gauge. 

We start from a Lagrangian density for several free fields that obey the 
SchrSdinger equation, we introduce what is often called the minimal 
interaction with the electromagnetic field and we add a gauge invariant 
Lagrangian density for the potentials. The canonical quantization procedure 
is based on the Hamiltonian formulation of the dynamics, and here we find 
some complications in the form of first-class constraints for the electro- 
magnetic field and second-class constraints for the matter fields. It is not 
necessary, though, to choose a particular gauge in order to carry out the 
quantization. Instead, we use the general procedures developed by Dirac 
(1950b, 1951, 1964, 1965) and Bergmann & Goldberg (1955). We also 
change variables and use the gauge-independent or physical matter fields, 
that create and annihilate particles together with their static electromagnetic 
fields. 

We carry out the derivations for the classical fields in Section 2, where 
we find a Hamiltonian in which the Coulomb interaction is separated from 
the radiation field. In Section 3 we calculate the Dirac brackets that lead 
to the appropriate commutation or anticommutation relations for the field 
operators. We then go over to the Fock space representation for the particles 
and that of state functionals for the fields, and obtain the corresponding 
equations of motion in the Schr6dinger picture. We conclude with some 
remarks in Section 4, and add an Appendix where we show how Lagrange 
multipliers can be used in the transformation theory of dynamical systems 
with constraints, together with the relation to the formalisms of Dirac 
and Bergmann. 

We use natural units such that h, c, E0 and/~o are all equal to 1. We follow 
the summation convention for repeated indices, modified in the case of 
Greek subindices that range from 0 to 3 to reflect the time-favoring in- 
definite metric in spacetime. 

2. The Classical Interacting Fields 

A real Lagrangian density for n free fields Ck that represent noninteracting 
particles of mass mk when spin and relativistic effects are ignored is 

1 , 

The equation of motion of each field Ck is the corresponding Schr6dinger 
equation. We now assume that each particle has a charge qk, and introduce 
the interaction with the electromagnetic field through the usual gauge 
invariant substitution 

Ou -+ Dku = Ou + iqkAu (2.2) 
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We add a free-field Lagrangian density for Av and obtain 

=k=, 2t(r DkoCk-- CkDk0r ~b*).Dk~k --�88 v (2.3) 

where 
F ~ v = A ~ , , , - A , , ~ ,  (2.4) 

This Lagrangian density is invariant under arbitrary gauge transformations 
of the second kind. We now change the matter field variables to the gauge 
invariant (Dirac, 1950a; Goldberg & Marx, 1968; Marx, 1970) fields 

~s~ = Ck exp(-iqk ~) (2.5) 

where 

f dSx'G(x - x')V'  .A(x', t) (2.6) ~(x, t) 

G(x) = (4~lxl)  -1 (2.7) 

It is obvious that ~ vanishes when the potentials are transverse, that is, 
when we use a Coulomb or radiation gauge; this is the reason why many 
of the special procedures we use are trivial in such a gauge, to the extent 
that they are usually ignored. We now find that, for each value of k, 

Dku[~bk exp(iqk ~)] = (D~,, ~bk) exp(iqk ~:) (2.8) 

where 
D~o = Oo + iqk x (2.9) 

D'k = --V + iqk -As (2.10) 

X = A0 - ~ (2.11) 

A s = A + V ~ :  (2.12) 

We have pointed out (Marx, 1970) that X and As are the gauge invariant 
parts of the potentials, which can be expressed in terms of the fields by 

X(X, t) = f d3x ' VG(x - x').E(x',  t) (2.13) 

f dax ' VG(x - x') ^ B(x', t) (2.14) As(x, t) 

In this manner we express 5r in terms of gauge-independent quantities 
only, 

D' 

where 
p = Y q~lr z (2.16) 

20 
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We now find that the momenta conjugate to ~bk, r Ao and A (not X and 
As) are 

Hk 1' * * = ~t~bk, Hk = ~-iCk (2.17) 

/70 = 0 (2.18) 

and 

II(x, t) = A(x, t) + VA0(x, t) + f d3x ' VG(x - x') p(x'~ t) (2.19) 

respectively. The Hamiltonian is given by 

H = f d3x(Hk ~k +/Tk q~k + II .  A - oft') (2.20) 

and the constraint (2.18) leads to a secondary constraint. The condition 

rio = -3H/3Ao = 0  (2.21) 

gives 
V. II = 0 (2.22) 

which, as can be seen from equation (2.19), is one of Maxwell's equations, 

V. E = p (2.23) 

It is easy to see that the set of first-class constraints (2.18) and (2.22) and 
second-class constraints (2.17) is complete. Elimination of the generalized 
velocities and integration by parts then gives the Hamiltonian in the form 

g=k~=l f dzx ~----~k[(V + iqkAs)~b:].(V--iqkAs)r 

�89 f d3x d3x ' p(x, t) p(x', t) G(x - x') + 

f d3x[II 2 + (V A As) z] + �89 (2.24) 

The first term contains the free-field Hamiltonian for the Schr6dinger 
fields and their interaction with the radiation field, the second term represents 
the Coulomb interaction and the last term is the Hamiltonian for the free 
electromagnetic field. 

We can compare this derivation to the corresponding one for the Dirac 
field in the radiation gauge (Luri6, 1968) and to the gauge-independent 
formulation for that field (Goldberg & Marx, 1968), where we should 
choose the vector n that represents the state of motion of the observer 
along the time axis. 

3. Canonical Quantization 
In order to obtain the commutation relations from their classical 

analogues, we find that the constraints in the theory require the computa- 
tion of Dirac brackets, some of which differ from the corresponding 
Poisson brackets. We follow the procedure explained in the Appendix. 



QUANTIZATION OF THE SCHRODINGER AND RADIATION FIELDS 311 

The functionals that vanish due to the constraints are 

r,~ = / / k _  ~. �9 ~t~bk (3.1) 

Y2~ = fi~* + ~ i ~  (3.2) 

Y3 =fifo  (3.3) 

I14 = 7 . 1 I  (3.4) 

and the matrix of the Poisson brackets of these functionals is , l0/10 ) 
O= \ i l  0 0 

0 0 0 
0 0 0 

(3.5) 

where 1 stands for an n • n unit matrix multiplied by the unit matrix in 
Hilbert space, that is, a Dirac S-function. There are two null vectors, which 
can be chosen with one nonvanishing element, a S-function, in either of 
the last two positions, and the observables for the radiation field are II  
and As. The quasi-inverse of 0 is equal to 0, and we can calculate the Dirac 
brackets of the observables. 

It is convenient to express the solenoidal fields 1I and As in terms of 
the momentum space expansions 

As(x , t) = (277") -3/2 f d3k es~) a~(k, t) exp(ik. x) (3.6) 

I I (x ,  t) = (27r) -3/2 f d3kesOx) Trs(k, t) exp(- ik.x)  (3.7) 

where the r are two polarization vectors perpendicular to k. We choose 
the circular polarization vectors that satisfy 

r = r (3.8) 

so that the reality conditions for the fields As and II  are expressed by 

a,(-k,  t)* = a~(k, t), %(-k,  t)* = %(k, t) (3.9) 

The Dirac bracket we have to determine is that of a, with %,, and it is 
clear that it is equal to the Poisson bracket. We use 

a,(k,t) = r (27r)-3/2 f cl3x A(x,t) exp(--ik.x) (3.10) 

%,(k', t) = e*'(k'). (270 -3/2 f dax II(x, t) exp(ik'. x) (3. 1 1) 

and we find the Poisson bracket 

{a,(k, t), ~r,,(k', t)} = 8,,, 8(k - k') (3.12) 
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The commutators  then are]" 
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[a~(k), a,,(k')]_ = 0 (3.13) 

[~rs(k), %,(k')]_ = 0 (3.14) 

[a~(k), 7r~,(k')]_ = iSs~, ~(k - -  k')  (3.15) 

The Dirac brackets that  we need for the matter  fields are 

[~bk(x,t),~b~,(X',t)lo=--i~kk, S(x--x') (3.16) 

differing f rom the Poisson brackets which vanish. The corresponding 
commuta tors  or anticommutators:~ then are 

[r ,P~,(x')l+_ = ~, ~(x  - x ' )  (3.17) 

We can now write the Hamil tonian operator  in the form 

H= Hm + Hem + H ~ (3.18) 

where 

Hm=- ~=l f d3x 2~k~(x) V2~k(x) 

1 " t qkqk" , +~ k~l k~l f d3x d3x' ~b~,(x')Ck(x) 4zr~  ~ x '  I ~bk(x)~bk'(x ) 

= �89 f d3k[rr,(k) 7r,(-k) + k 2 a~(k) a~(-k)] H~m 

(3.19) 

(3 .20)  

n ~ z 
Hx= f d3xAs(x) '~ - ~  ~bt(x) iVCk(x) + .f d3xA~(x) ~qk ~bk(x)t ~bk(x) 

k=l k=l 

(3.21) 

t The reason the sign in equation (3.15) is opposite to that in equation (92) in Goldberg 
& Marx (1968) is our choice there of H i = -H~ as the momentum conjugate to A,  We 
also note that this formalism does not lead to the assumption that the commutator of 
Ass and Hj is proportional to 3u, a choice that is first proposed (Bjorken & Drell, 1965; 
Lurie, 1968) and then discarded because it leads to a contradiction with the solenoidal 
nature of the operators. 

:~ The relationship between Dirac brackets and anticommutators is somewhat 
ambiguous, since the former change sign under an interchange of the fields and the 
latter do not. In quantum mechanics, the observables for fermion fields have an even 
number of field operators, and their commutators do not depend on the choice of anti- 
commutation instead of commutation relations. These particular (anti)-commutation 
relations are often 'derived' by using an equivalent complex Lagrangian density, such 
that H~ = i~b* and ignoring the fact that/-/~* = 0. 
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Although many calculations can be performed by algebraic manipula- 
tions, it is often convenient to use explicit representations for the state 
vectors and operators, especially when doing numerical calculations. A 
convenient representation for the particle operators is a nonrelativistic 
Fock space (Schweber, 1961); in this theory only one wave function with 
fixed numbers of particles needs to be considered at a time. The analogous 
representation for the radiation field in the SchrOdinger picture is based on 
state functionals (Marx, 1969), in which the momenta are represented by 
functional derivatives, 

Try(k) = - i3 / 3a,(k ) (3.22) 

The practical convenience of this choice is limited by our lack of familiarity 
with functional differential equations and functional integrals, but we do 
know the ground state functional and the raising and lowering operators, 
and we can always go back to the usual algebraic calculations. 

The components of the Fock space vector are then functions of the 
appropriate number of particle variables and functionals of the two in- 
dependent fields. When we consider a dynamical problem, these probability 
amplitudes also depend on time. Thus, the amplitude for a state with N 
particles, of which vk are of the type k, has the form 

~ N  = Yf(vl v2""" vn)(Xl 1, XI2 . . . .  , Xlvx,  X21 . . . .  ,x...; al, a2] (3.23) 

The equation of motion 
i}P(t) = H}P(t) (3.24) 

leads to the SchrOdinger equation for the amplitude 

1 2 ~ qkqk' 
i~N(t) = ~ V k , +  4~lxk _ xk,,, [ 

= = = k ' = l  r= l  r ' ~ l  

~ r--I q 2  

+ Z 4~lx~r - x~r, [ 
k=l  r= l  r ' = l  

32 
-t- �89 f d3k 3a~(k) 3a,(-k) 

J k= l  = 

} + 2--~ A~(xk3 %(0  
k=l  r= l  

(3.25) 

So far we have not made any approximations in our presentation and 
we obtain equation (3.25), which usually serves as a point of departure 
for practical calculations. By choosing the right masses and charges for 
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the fields Ck to represent nuclei and electrons and the amplitude with the 
right numbers of particles, we can deal with one or more atoms or molecules. 
The eigenstates of the first three terms of the Hamiltonian in equation (3.25) 
correspond to the bound states for such systems when the Coulomb inter- 
action alone is considered; they can be determined either exactly or by 
different approximation methods. The translational degrees of freedom 
lead to nonnormalizable stationary states, unless we put the system in a box. 
The stationary states for the free radiation system are usually interpreted 
in terms of photons, and are not normalizable either when we extend the 
field over all of space. The terms coming from Hx are then usually con- 
sidered as a perturbation that induces transitions between the energy levels 
of the atoms and at the same time creates or annihilates photons. We could 
consider, for instance, an atom in an excited state and the radiation field 
in its ground state initially, and look for transitions to other states in a 
time interval. 

Although the separation of the terms in the Hamiltonian was made in a 
form suited for a discussion of bound states, it should be clear that the 
same equations are valid for scattering of particles and radiation. 

4. Concluding Remarks 

We have given a derivation of the equation of motion for a quantized 
radiation field interacting with an arbitrary number of charged particles, 
possibly arranged as atoms or molecules. We started from the free 
SchrSdinger and electromagnetic fields and added the so-called minimal 
interaction. We have kept explicit gauge invariance throughout the whole 
derivation, and the procedure is independent of any choice of gauge. 

We followed a canonical quantization procedure properly modified to 
take into account the constraints that are present in the theory. The 
Coulomb interaction separated in a natural way from the truly dynamical 
electromagnetic field, represented by the transverse part of the vector 
potential. In this manner we do not quantize any redundant, gauge- 
dependent fields. This explains why our procedure resembles closely the 
quantization in a Coulomb or radiation gauge, although the additional 
constraint V. A = 0 should receive special attention in such a gauge. 

We have restricted ourselves to the SchrSdinger picture, which is more 
readily interpreted in terms of probability amplitudes, both for the particles 
and the radiation field. These occur naturally when we use the Fock space 
representation for states and operators, combined with the state functionals 
for the radiation. The Dirac picture is often used to simplify the equations 
in a perturbation theory, but the same expressions can be obtained working 
in the Schr6dinger picture. 

We did not include an external electromagnetic field, which is a given 
classical field, in our presentation, but such a field can be easily added in the 
gauge invariant substitution (2.2). 

What was done with the SchrSdinger equation can be repeated with the 
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Pauli equation for nonrelativistic particles with spin, or with the relativistic 
equations of Dirac and Klein-Gordon. We have seen how a covariant 
treatment in the relativistic case still involves a choice of an inertial observer 
(Goldberg & Marx, 1968; Marx, 1970), which also plays a role in the 
separation of the Coulomb and radiation fields. Although this detracts 
from the formal elegance of the formulation, we believe that it is neverthe- 
less desirable for a more meaningful physical interpretation, and that such 
a distinction is probably unavoidable for a consideration of bound states 
in a relativistic theory. 

The equations derived here can also serve as a guide for a similar rela- 
tivistic theory with a fixed number of 'particles'. In such a theory, pair 
creation and annihilation is taken into account by changing the direction of 
propagation in time. Propagation forward in time corresponds to a particle 
state, and propagation backward in time, to an antiparticle state. This 
formalism avoids some of the usual difficulties with infinities, such as those 
related to closed fermion loops in Feynman diagrams, but is not sufficiently 
developed yet. 

We have also left for an Appendix the general theory of Hamiltonian 
dynamics and infinitesimal transformations for classical fields with 
constraints. The use of Lagrange multipliers simplifies the derivations, and 
the results so obtained are equivalent to those of Dirac and Bergmann. 

Appendix 

The canonical quantization procedure is only one way to obtain the 
equations of  motion and the commutators of operators in quantum 
mechanics, but it provides a certain amount of guidance and reliability 
that make its application desirable whenever it is possible. 

The relationship between the classical and quantum theories is best 
understood in terms of the infinitesimal canonical transformations of the 
former and the unitary ones of the latter. The commutator Y 2  ~ Y i  -I ~-"2 ~--1 
of two transformations 3"-1 and Y2  is generated by the Poisson bracket of 
the generators in the classical theory, and by the commutator in the quantum 
theory. 

The presence of constraints in a theory can lead to inconsistencies unless 
the canonical transformations are restricted to those that leave the con- 
straints invariant. As in many similar problems, the use of Lagrange 
multipliers provides a convenient way of implementing the constraints. 

We consider a system described by n generalized coordinates, the fields 
~k- The dynamics is determined by a Lagrangian, which is a functional of  
the generalized coordinates and velocities, 

L = L [ ~ , ~ ]  (A.1) 

The momenta conjugate to these coordinates are defined by the functional 
derivatives 

~rk = 3L/3~k (A.2) 
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and the Hamiltonian is obtained from 

H = zrk. g~k - L (A.3) 

by elimination of the generalized velocities. The dot indicates a scalar 
product in the Hilbert space, that  is, an integration over the continuous 
indices. The canonical equations of motion have the form 

The Poisson bracket of  two functionals is defined by 

3F 3G 3F 3G 
{F, G} = 3r k.3~.k 3~'k'3r (1.5) 

It  is convenient to designate the coordinates and momenta  collectively by 
~:,, so that 

~, = Cr, r = 1, . . . ,  n (1.6) 

~:r = 7rr-n, r = n + 1 . . . . .  2n (A.7) 

and define the matrix K in terms of  n x n submatrices by 

K=(_01 10) (1.8) 
We can then rewrite equations (A.4) and (A.5) in the form 

~ = {~, H} (A.9) 

3F 3G 
{r, G} = •,, ~ . ~  (A. 10) 

Canonical transformations of coordinates and momenta  are then defined 
by the requirement of  invariance of the form of equations (A.4). We can 
easily extend the formalism used in mechanics (Lanczos, 1962) to the theory 
of classical fields. These transformations can be specified by a generating 
functional, and the choice of  independent variables is indicated by later 
applications to infinitesimal transformations. The form of the canonical 
equations is preserved when the differential forms constructed out of  the 
old and new variables satisfy 

rrk. 3r + q~k. 3"~k = 3U[ r  (A.11) 

We now assume that we have p constraints of  the forint  

Yt[~] = 0 (A.12) 

t We assume that we have 'vector' constraints, such as those in equations (3.1) to 
(3.4), that is, both the constraints and the arguments are vectors in the Hilbert space. 
The consideration of 'scalar' constraints requires only a few changes in notation. 
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and we restrict the transformation to those that leave the constraints form 
invariant. In this case, the variations 8r and 877k are no longer independent, 
since equation (A.!2) has to be satisfied both for the ~:r and ~r. We now 
replace U in equation (A. 1 1) by 

V[r #] = U[r 7?] + A,[q~, #]. Y~[~, ~r[r #]] § A~[r ~']. Y~[~[~, ~7], 7?] 

(A.13) 
where the Lagrange multipliers A t and At can be used to write down the 
equations 

rrk = 3 V/8r ~k = 8VlS~Tk (A.14) 

as if the variations were now independent. These are 2n equations, which 
together with the two sets of constraint equations determine the 2n + 2p 
vector functionals ~rk, ~k, At and -/it in terms of Ck and 77r,, and we can then 
solve for the new variables in terms of the old or vice versa. Since the Y~ 
vanish, we have no functional derivatives of the At and/i~ in the equations. 

We now restrict ourselves to infinitesimal transformations. They are 
generated by functionals Frelated to Uby  

U = Ck. ~k + eF (A. 1 5) 

We obtain a set of equations for 

3~:r = ~ r -  ~:~ (A.16) 

from equations (A.12) and (A.14). To lowest order in e, they are 

s rq  
-3rrk = e ( ~  + ,~1. ~ ]  (A.17, 

8q~k=e (3F - 3Y,\ + A, . ~ )  (A.18) 

8gt 8Y, 
+ = 0 (Ao19) 

where, in this order, we can replace ~7 k by 7rk in F and we have set 

eat = Az + At (A.20) 

Substituting equations (A. 17) and (A. 18) into (A.19), we obtain 

{ Y~, F} + { rz, Yv}. ,~, = 0 (A.21) 

I f  the 'matrix' 0 of the Poisson brackets 

0,t, - { Y,, Y,,} (A.22) 

has an inverse, we can solve for the At and determine the 3set. But when 
this matrix is singular,]" we have a solution only if certain consistency 

t This is obviously the case when one or more constraints are first class. The Poisson 
brackets of a first-class constraint with all other constraints vanish; other constraints 
are called second class. But the matrix can still be singular when all constraints are 
second class. 
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conditions are satisfied, and this solution then has arbitrary parameters. 
I f  {u ("~} is a complete set of independent null vectors-~ of the antisymmetric 
matrix 0, we multiply both sides of  equation (A.21) by each u ("~ to obtain 
the consistency conditions 

u} '~ .{ Y~, F} = 0 (A.23) 

A functional F that satisfies all these conditions is called an allowed genera- 
tor, and the corresponding solutions are 

)h = - y , , .  { Yz,, F} + ~x,, u~ "> (A.24) 

where the ~, are arbitrary functions and ~, is a quasi-inverse of  0, and 
satisfies 

~'u,.Oev,.yr, z . . . .  Yw", Ou,.y~,r,.Ol,~ . . . .  Ou,,, (A.25) 

This procedure is particularly simple when the constraints are expressed 
in such a way that a maximum number is first class, then the nonzero 
submatrix has an inverse. This is the procedure followed by Dirac, but 
the use of  the quasi-inverse makes this rearrangement of constraints 
unnecessary. We now have that 

~ . y w . t Y , , F } + o : , , ~ . u ~  ) (A.26) 

aY, 3YI ) 
37rk. Z , ' .  { Y~', F} + ~, --'3rrk u~'~ (A.27) 

and the change in a functional G is 

3G=e({G,F}-{G,  Y~}.yw.{Yv, F}+%{G, Y,}.u~ ")) (A.28) 

A functional G is an observable if its changes under the restricted infinitesi- 
mal canonical transformations are independent of any arbitrary parameters 
e,. In the case of the electromagnetic field, these (classical) observables are 
the gauge-independent quantities. The conditions that G has to satisfy 
to be an observable are clearly the same as the consistency conditions 
(A.23), and observables and allowed generators are the same functionals. 
We now define the Dirac bracket of two observables G and F as 

[G, F] = {G, F} - {G, Y~} .Yw .{ Yv, F} (A.29) 

and equation (A.28) reduces to 

3G = ~[G, F] (A.30) 

Since the procedure to maximize the number of first-class constraints, 
as demanded by Dirac, is simply a new form to express the same constraints, 

I" In this case they really are families of nuI1 vectors with a continuous index that can 
be left implicit in n to avoid complicating the notation. Thus, the a,, are functions and 
when n is repeated we sum over the discrete values and integrate over the continuous 
index. 
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there is no difference in the brackets that are obtained. Bergmann restricts 
the canonical transformations in the same way we have done here, but the 
mathematical calculations are quite different. We give the main steps below 
in a direct proof  of the equivalence of the two procedures. 

When we follow Bergmann's approach, we define new coordinates in 
phase space by completing the set { Yz} by any 2 n - p  other coordinates 
{Ym}. The matrix ~/is given by 

~7,,,,' = -Krt 3ym" 3ym, (A.31) 

and the consistency conditions for a functional F '  related to F by 

F '  = F +  )h. Yz (A.32) 

are 
U("). 8F'/Sym = 0 (A.33) 111 

where the {U ("~} are a complete set of null vectors of ~7. The brackets are 
then defined by Bergmann as 

3G' ~ 3F' 
[G', r ' ]  = 3--~m./5,,m,. 3y,,, (A.34) 

where/3 is a quasi-inverse of ~7. The two sets of null vectors are related by 

U~ ) = {y,,, Y,}. u} ") (A.35) 

u} ") = ~,m. U~ ") (A.36) 

where 

~tm = --tOrt ~ yl .  3y m (A.37) 

It is now straightforward to show the equivalence of the consistency 
conditions that define the observables. The equality of the brackets of two 
observables in both formalisms can be concluded from the fact that equation 
(A.30) is satisfied in both. A direct proof  seems to require a few lengthy 
calculations. We first note that the product of a matrix and a quasi-inverse 
differs from the unit matrix by linear combinations of products of null 
vectors, and we define c,~, and cs in 

0u, .7e ~- = 3u,, 3 + c,,, v~ ") u~ ') (A.38) 

~u,. 0v ,,, = 3H- 3 + c;,, u[ "~ v~,", "~ (A.39) 

where 3 stands for the Dirac 3-function and the {v <"~} are a complete set of 
null vectors of ~. 

We then find that 

3F' , 3G' (A.40) 
[r ,  G] = ~y . flmm'' ~Ym" 
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where 
~'.,,., = {Ym, Ym'} - {Ym, Yz). 7,v .(Yv,Ym') 

and that a quasi-inverse o f  r/is given by 

f/(n) l/(n') 
5,.m. = ~; . . , ,  + a ~  - , .  - ~ ,  

where 
, ~.-~ ~: .  8~:, .v~,, , , ,  ~ 

a.., =--C..,,C,,,,,.,K~Vl "3~'OYr 

(A.41) 

(A.42) 

(A.43) 

The consistency conditions (A.33) then show that  the second term in 
equation (A.42) does not  contribute when we substitute it into equation 
(A.40), which completes the proof.  
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